关于车牌识别系统新技术的应用
发布者: 本站发布日期:2016-09-19 16:34:27阅读次数:
车牌识别系统的识别率和识别准确率越高越好,但同时需认识到识别率达到100%是不可能的,一方面因为车牌污损、模糊、遮挡,或者糟糕的天气(下雪﹑冰雹﹑大雾等等)都会严重影响识别的效果,另一方面一些中英文字符的分割与识别本身难度较大,比如“川”字易错误分割,以及“0-Q”、“2-Z”、“4-A”、“5-S”、“7-T”、“8-B”、“O-D”等易混淆字符。因为识别率的统计是以号牌信息有效的车辆总数为基础的,所以,如果考虑了各种环境、情况下的车牌,车牌识别系统在实际应用中的识别率会大打折扣,在无法识别时仍依赖人工进行判断、识别。
针对传统车牌识别算法中字符识别率偏低的缺点,目前出现了一种基于卷积神经网络的识别方法,通过对车牌字符图像的样本学习,优化神经网络每层的权值参数,从而在很大程度上提高车牌的字符识别率。仿真结果表明,采用卷积神经网络的识别方法对车牌中的字符进行识别,正确识别率可以到达99%,识别率和抗干扰性明显优于结构特征法、模板匹配法等传统识别方法(后两者分别只有94%、95%)。
利用神经网络的优势,采用一种改进的基于卷积神经网络的识别机制对车牌照中的字符进行识别。该识别方法通过对理想预处理条件下的车牌字符图片的学习,优化了网络系统中各层的权值参数,大大提高了车牌照中的字符识别率。在实际应用中,对于前期预处理出现的车牌定位不清、字符分割错误等缺点,如果进一步优化网络结构,则可以识别预处理较差条件下的车牌字符。
车牌识别技术是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别系统是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子警察、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。